GRADE 11

Trigonometry

WEBSITE NOTES

TOPIC: Trig functions and revision grade 10 trigonometry

- Basic graphs defined by $y = a \sin x$, $y = a \cos x$ and $y = \tan x$ for $\theta \in [-360^0; 360^0]$
- Investigate the effect of k and p on the graphs of the functions defined by: $y = \sin(kx)$, $y = \cos(kx)$, $y = \tan(kx)$
- $y = \sin(x + p)$, $y = \cos(x + p)$, $y = \tan(x + p)$

Three basic Trig Functions are

- 1. $y = a \sin x$
- 2. $y = a \cos x$
- 3. y = tan x

WHERE a REPRESENTS THE AMPLITUDE OF THE GRAPH OF SIN AND COS

Example 1

a. $Y = 2 \sin x$

b. $Y = 2 \sin (x + 30^{\circ})$ (with the previous graph showing the shift of 30° to the left.

- Amplitude = 2
- Range [-2;2] y-values
- Domain [-360°; 360°]
- Period

for sin and cos

(how many degrees it takes to complete a complete graph) $\frac{360^{\circ}}{value\ in\ front\ of\ x}$ IN THIS CASE THERE IS 1 BEFORE x BECAUSE THERE IS NO NUMBER SHOWN

$$\frac{360^{\circ}}{1} = 360^{\circ}$$

Exercise 2

Consider the following Trig Functions and work out the period of each:

- 1. $Y = \sin 2x$
- 2. $Y = 2 \cos 3x$
- 3. $Y = 3 \cos 2x$
- 4. $Y = 2 \tan 2x$

Period<u>for sin and cos</u>

360°
value in front of x
for tan
180°

 $\frac{100}{\text{value in front of } x}$

CHANGES IN GRAPHS (WILL APPLY TO ANY GRAPH FUNCTION)

If $f(x) = \sin x$

Function change	Shift	Example
f(x) + c	Shift the graph of f(x) up c units	$F(x) = \sin x + c$
f(x) - c	Shift the graph of f(x) down c units	$F(x) = \sin x - c$
f(x + c)	Shift the graph of f(x) left c units	$F(x) = \sin(x + c)$
f(x - c)	Shift the graph of f(x) right c units	$F(x) = \sin(x - c)$
-f (x)	Reflect the graph of f(x) about the x-axis	$F(x) = -\sin x$
f (-x)	Reflect the graph of f(x) about the y-axis	$F(x) = \sin(-x)$
f(c.x)	Compress the graph of f(x) horizontally by a factor of c. For Trig graphs it will decrease the period.	$F(x) = \sin(c.x)$
c.f(x)	Stretch the graph of f(x) vertically by a factor of c. For Trig graphs it will increase the amplitude.	F(x) = c. sinx

Example 3

Given $y = \cos x$, complete the following table:

Function change	Shift
f(x) + 3	
f(x) - 2	
$\frac{f(x + 30^{\circ})}{f(x - 45^{\circ})}$	
f(x - 45°)	
-f (x)	
f (-x)	
f(2.x)	
3.f(x)	