GRADE 11 Functions WEBSITE NOTES

TOPIC:

- Revise the effect of *a* and *q* and investigate the effect of p on the graphs of the functions defined by:
- y = f(x) = a(x + p) + q
- $y = f(x) = a (x + p)^2 + q$
- $y = f(x) = a (x + p)^2 + q$
- $y = f(x) = \frac{a}{x+p} + q$

Functions

Characteristics of functions:

- The given *x*-value is known as the independent variable, because its value can be chosen freely. The calculated *y*-value is known as the dependent variable, because its value depends on the *x*-value.

- An asymptote is a straight line, which the graph of a function will approach, but never touch.

– L	inear	functions	of the	form	y = mx + q	1.
-----	-------	-----------	--------	------	------------	----

Sketch Graph	Use a table. Y=f(x) = x-2			
	Substitute the values for x (which			
	you chose) into the equation			
	X -2 -1 0 1 2			
	F(x) (-2) (-1) -2 -1 0			
	=y -2 -2			
	=-4 =-3			
Domain	XER			
Range	YER			
m changes	The Slope changes.			
q changes	The graph cuts the y axis at q.			
	The graph can shift up or down then			
	in comparison with original graph			
	Example f (x) $-x_2$			
	Example I (X) = X^2			
	g(x) = x - 5			
	The graph of g(x) cuts the y-axis at -			
	5. Therefore g(x) has moved down 3			
	units from f(x) graph.			

- Parabolic functions of the form $y = ax^2 + q$.

Sketch Graph	Use a table. Substitute the values for x (which you chose) into the equation
Domain	XER

Range	If a is positive		
	Y ≥q If a is pegative		
	Y≤q		
<i>a</i> changes	If a ≥ 0		
	The greater the a value the more narrow the "smile"		
	If $a \le 0$ The greater the a value the more narrow the "sad face"		
<i>q</i> changes	The graph cuts the y axis at q. The graph can shift up or down then in comparision with original graph.		

- Hyperbolic functions of the form $y = \frac{a}{x} + q$.

Sketch Graph	Use a table. Substitute the values for x (which you chose) into the equation
Domain	X E R; x≠0
Range	YER; y≠q
<i>a</i> changes	The value of y at x=1 will be a The value of y at x = -1 will be a ALSO REMEMBER If a >0 \int_{a}^{b}
	If a< 0

q changes	q indicates the y- asymptote. If $q = 0$ then the asymptote is $y = 0$ (x-axis)
	If $q = 3$ then the asymptote is $y = 3$, shifting up the graph by 3 units.

- Exponential functions of the form $y = ab^x + q$.

Sketch Graph	Use a table		
Domain	XER		
Range	lf a > 0		
	Y E R; y < q		
	If a<0		
	Y E R; y < q		
a and b and q changes	b>1 $a<0$ $a>0q>0q<0$		

Chiffe		
Shifts		
For c>u,		
to obtain the graph of:		
f(x)+c	shift the graph of $f(x)$	upward c units
f(x)-c	shift the graph of f(x)	downward c units
f(x+c)	shift the graph of f(x)	left c units
f(x-c)	shift the graph of f(x)	right c units
Reflections		
To obtain the graph of:		
-f(x)	reflect the graph of $f(x)$	about the x-axis
f(-x)	reflect the graph of f(x)	about the y-axis
Stretches and compressi	ions	
For c>1,		
to obtain the graph of:		
cf(x)	stretch the graph of f(x)	vertically by a factor of c
(1/c)f(x)	compress the graph of f(x)	vertically by a factor of c
f(cx)	compress the graph of f(x)	horizontally by a factor of c
f(x/c)	stretch the graph of f(x)	horizontally by a factor of c