GRADE 12

<u>Calculus – First Principles</u>

WEBSITE NOTES

TOPIC:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• First principles.

Example 1

To differentiate from first principles (definition) use the formula below

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Determine f'(x) from first principles if $f(x) = -3x^2$

$$f(x + h) = -3(x + h)^{2}$$
= -3(x² + 2xh + h²)
= -3x² - 6xh - 3h² to get $f(x + h)$ we replace x with $x + h$ and get
-3(x + h)²

Expand the brackets and Make sure you multiply the -3 with each term in the brackets

Substituting into $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ the definition of the derivative gives

$$f'(x) = \lim_{h \to 0} \frac{-3x^2 - 6xh - 3h^2 - (-3x^2)}{h \ f(x) = -3x^2} \ f(x) = -3x^2 \text{ so}$$
$$= \lim_{h \to 0} \frac{-3x^2 - 6xh - 3h^2 + 3x^2}{h}$$

Take out a common factor of *h* so you can cancel it with the *h* in the denominator.

As h goes to 0, -6x - 3h goes to -6x.

$$= \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$$

$$= \lim_{h \to 0} (-6x - 3h)$$

$$= -6x$$

You can always expect a question to determine the derivative (f'(x)) using first principles

Example 2 (Try Yourself)

1. Determine
$$f'(x)$$
 from first principles if $f(x) = 5x^2 - 4x + 2$ (6)

2. Determine f'(x) from first principles if $f(x) = \frac{2}{x}$

(6) [12]

Answers

1.
$$f(x+h) = 5(x+h)^2 - 4(x+h) + 2$$

 $= 5(x^2 + 2xh + h^2) - 4x - 4h + 2$
 $= 5x^2 + 10xh + 5h^2 - 4x - 4h + 2 \checkmark$
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 - 4x - 4h + 2 - (5x^2 - 4x + 2)}{h} \checkmark$
 $= \lim_{h \to 0} \frac{10xh + 5h^2 - 4h}{h} \checkmark$
 $= \lim_{h \to 0} \frac{h(10x + 5h - 4)}{h} \checkmark$
 $= \lim_{h \to 0} (10x + 5h - 4) \checkmark$
 $= 10x - 4 \checkmark$ (6)

2.
$$f(x+h) = \frac{2}{x+h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{2}{x+h} - \frac{2}{x}}{h} \checkmark \checkmark$$

$$= \lim_{h \to 0} \frac{\frac{2x}{x(x+h)} - \frac{2(x+h)}{x(x+h)}}{\chi(x+h)} \checkmark$$

$$= \lim_{h \to 0} \frac{\frac{2x - 2x - 2h}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{-2h}{x(x+h)}}{h}$$

$$= \lim_{h \to 0} \frac{-2h}{x(x+h)} \times \frac{1}{h} \checkmark$$

$$= \lim_{h \to 0} \frac{-2}{x(x+h)} \checkmark$$

$$= \lim_{h \to 0} \frac{-2}{x(x+h)} \checkmark$$

$$\approx \frac{-2}{x(x)} = \frac{-2}{x^2} \checkmark$$
(6)