GRADE 12

Calculus 2- Differential Rules

WEBSITE NOTES

TOPIC:

· Rules of differentiation.

NOTE: The notation we use for the derivative of y = f(x) is

$$D_x[f(x)]$$

When we find the derivative of a function, we say we differentiate the function.

NOTE!!!

If the question asks you to find the derivative but does not say USING FIRST PRINCIPLES, then you use the DIFFERENTIATION RULES as below.

Rules

1. If
$$f(x) = b$$
 then $f'(x) = 0$ where b is a constant

Example 1

If
$$h(x) = 12$$
, then $h'(x) = 0$

2. If
$$f(x) = x^h$$
 then $f'(x) = nx^{h-1}$

Example 2

If
$$k(x) = x^5$$
, then $k'(x) = 5x^4$

3.
$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}[g(x)]$$

Example 3

If
$$f(x) = x^5 + x^4$$
, then $\frac{d}{dx}f(x) = 5x^4 + 4x^3$

NOTE!!!

$$\frac{d}{dx}f(x)$$

Is the same as saying – the derivative of the function f(x) or f'(x)

4.
$$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$$

Example 4

If
$$f(x) = 3x^5$$
 then
$$\frac{d}{dx}f(x) = 3 \times \frac{d}{dx}f(x) (x^5) = 3 \times 5x^4 = 15x^4$$

Sometimes you may need to use distributive law in order to get the function in standard form. It must be in a standard form before you differentiate. Multiply out first using FOIL

Example 5

Determine f'(x) if f(x) = (3x + 2)(x - 5)

Solution

$$f(x) = 3x^2 - 13x - 10$$

$$\therefore f'(x) = 6x - 13$$

Sometimes you may need to change roots into exponents before doing differentiation.

Example 6

$$\sqrt{x} = x^{\frac{1}{2}}$$

so
$$\frac{d}{dx} \sqrt{x} = \frac{1}{2} x^{-\frac{1}{2}}$$

• $\frac{dy}{dx}$ as the derivative of y with respect to x • $\frac{d}{dx}\sqrt{x}$ as the derivative of \sqrt{x} with respect to x

 $\frac{d}{dx}f(x)$ as the derivative of f(x) with respect to x

REMEMBER

NOTE: The notation we use for the derivative of y = f(x) is

$$y'$$
 or $\frac{dy}{dx}$

$$\frac{dy}{dx}$$

$$D_x[f(x)]$$

When we find the derivative of a function, we say we differentiate the function.

Example 7 (Try Yourself)

You need to find the Derivative of each question using the rules and not first principles because it does not say first principles.

Remember STANDARD FORM and ROOTS into EXPONENTS first

- a) Evaluate $D_x[(x^3-3)^2]$
- b) Find f'(x) if $f(x) = \sqrt[3]{x}$
- c) Find $\frac{d}{dx} \sqrt[3]{x^5}$
- d) Differentiate f(x) if $f(x) = \sqrt{x^4}$ e) Find f'(x) if $f(x) = \sqrt{16x^3}$

[11]

Example 8 (Try Yourself)

June 2015 Exam Paper 1

REMEMBER THE DERIVATIVE IS THE GRADIENT AT A POINT.

TO WORK OUT A TANGENT OF A GRAPH YOU NEED TO WORK THE **GRADIENT OUT FIRST.**

QUESTION 8

8.1 If
$$f(x) = \frac{4}{x}$$
, determine $f'(x)$ from first principles. (5)

8.2 Determine:

8.2.1
$$\frac{dy}{dx}$$
 if $y = 5x^2 + 5x + 2$ (2)

8.2.2
$$D_x \left[\sqrt[3]{x^2} - \frac{1}{2}x \right]$$
 (3)

8.3 Given: $p(x) = x^3 + 2x$

> Show, using relevant calculations, why it is not possible for a tangent drawn to the graph of p to have a negative gradient.

(3) [13]