GRADE 12

Analytical Geometry

WEBSITE NOTES 2

TOPIC: The equation of a circle (any centre)

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

In Grade 11 you learnt:

1. Distance Formula
$A B=\sqrt{\left(x_{a}-x_{b}\right)^{2}+\left(y_{a}-y_{b}\right)^{2}}$
2. Gradient between two points
$m A B=\frac{y_{a}-y_{b}}{x_{a}-x_{b}}$
3. The MIDPOINT between two points

Midpoint $\mathrm{AB}=\left(\frac{x_{a}+x_{b}}{2} ; \frac{y_{a}+y_{b}}{2}\right)$
4. $m=\tan A$ (where m is the gradient of a line and A is the angle of inclination)

Examples to try

Determine the equation of the circle with:

1. The centre is the origin and passing through the point $(2 ; 3)$
2. The centre is $(-2 ; 4)$ and radius is 8 .
3. Diameter CD where $C=(1 ;-4)$ and $D=(-3 ; 9)$.

Answers

1. $(2)^{2}+(3)^{2}=r^{2}$
$4+9=r^{2}$
$13=r^{2}$
$(x)^{2}+(y)^{2}=13$
2. $(x+2)^{2}+(y-4)^{2}=64$
3. $C D=\sqrt{\left(x_{c}-x_{d}\right)^{2}+\left(y_{c}-y_{d}\right)^{2}}$
$C D=\sqrt{(1+3)^{2}+(-4-9)^{2}}$
$C D=\sqrt{(4)^{2}+(-13)^{2}}$
$C D=\sqrt{16+169}$
$C D=\sqrt{185}$
Therefore the radius will be $\frac{1}{2} \times \sqrt{185}$
The centre of the circle is obtained by using the midpoint formula
$=\left(\frac{x_{c}+x_{d}}{2} ; \frac{y_{c}+y_{d}}{2}\right)$
$=\left(\frac{1-3}{2} ; \frac{-4+9}{2}\right)$
$=\left(\frac{-2}{2} ; \frac{5}{2}\right)$
$=\left(-1 ; \frac{5}{2}\right)$

Therefore, the formula of the circle is
$(x+1)^{2}+\left(y-\frac{5}{2}\right)^{2}=\left(\frac{\sqrt{185}}{2}\right)^{2}$
$(x+1)^{2}+\left(y-\frac{5}{2}\right)^{2}=\frac{185}{4}$

Website Exercise 1

Exercise 1

1.1 Yes. Centre is the origin.
1.2 Yes. Centre is the origin.
1.3 No. $-2 \mathrm{y}^{2}$
$2.1 \quad x^{2}+y^{2}=49$
2.2 Sub the point $(8 ;-3)$ into $x^{2}+y^{2}=r^{2}$
$(8)^{2}+(-3)^{2}=64+9=73$
$r^{2}=73$
$x^{2}+y^{2}=73$
$2.4(x-1)^{2}+(y-3)^{2}=37$ (similar to Example no 3 above)
$2.6(x-1)^{2}+(y-1)^{2}=5$ or $(x-3)^{2}+(y-1)^{2}=5$ (similar to Example no 3 above but do not have to work out the midpoint because the points are not the diameter.
You will substitute the points into the circle formula and obtain a and b using simultaneous equations
Substitute $(2 ; 3)$ and $r=\sqrt{5}$ into the circle formula to obtain equation 1
$(x-a)^{2}+(y-b)^{2}=r^{2}$
$(2-a)^{2}+(3-b)^{2}=\sqrt{5}^{2}$
Substitute ($2 ;-1$) and $r=\sqrt{5}$ into the circle formula to obtain equation 2
$(2-a)^{2}+(-1-b)^{2}=\sqrt{5}^{2}$
SOLVE SIMULTANEOUSLY
3.1 radius $=11$ and centre is origin
3.2 radius is $\sqrt{3}$ and centre is origin. Divide everything first by 3 and move -9 to the right hand side of equal sign.
3.3 Centre is $(1 ; 5)$ and radius is 4

