GRADE 12

Analytical Geometry

WEBSITE NOTES 3

TOPIC: The equation of a circle (any centre)

 $(x-a)^2 + (y-b)^2 = r^2$

The equation of a tangent to a circle

In Grade 11 you learnt:

- 1. Distance Formula
- $AB = \sqrt{(x_a x_b)^2 + (y_a y_b)^2}$ 2. Gradient between two points
- $mAB = \frac{y_a y_b}{x_a x_b}$
- 3. The MIDPOINT between two points Midpoint AB = $(\frac{x_a+x_b}{2}; \frac{y_a+y_b}{2})$
- 4. m = tan A (where m is the gradient of a line and A is the angle of inclination)

Revise to work out the equation of a circle

Examples to try

Diameter is 2 x radius

- <u>Example where you are given the centre and the radius</u>
 Find the general equation a circle centre (-1;3) with a radius of 5 units.
- 2. <u>Example where you are given the Diameter</u> Determine the equation the circle, given the diameter AB

Tangents

Example 1

Show that 2x + 5 + y = 0 is a tangent to the circle $x^2 + y^2 = 5$.

You will need to use simultaneous equations in this type of example. WHY??? You need to show that there is only 1 point of intersection. So you need to work out for x or for y. Look at the equations given and decide on the easier one to work out.

In this example 2x + 5 + y = 0 can be easily changed to y = -2x - 5 and then substituted into $x^2 + y^2 = 5$.

Example 2

Example 3 (Try yourself)

Find the equation of the tangent at the point P(1;3), given the centre C(-1;-1).

ANSWER
Tangent:
$$y = mx + c$$
 $m_{radius} = \frac{3-(-1)}{1-(-1)} = 2$ $m_{radius} \times m_{tangent} = -1$ $\therefore m_{tangent} = \frac{-1}{2}$ (radius \perp tangent) $\therefore y = \frac{-1}{2}x + c$ Subst. P(1; 3) $3 = \frac{-1}{2}(1) + c$ $c = \frac{7}{2}$ \therefore Equation of tangent: $y = \frac{-1}{2}x + \frac{7}{2}$

Example 4 (Try yourself)

Find the equation of the tangent to the circle $(x - 2)^2 + (y - 3)^2 = 16$ at (6;0). HINT: the centre of the circle you can get from the circle formula.

Answer

Centre: (2;3) $m_{radius} = \frac{3-0}{2-6} = \frac{-3}{4}$ $m_{radius} \times m_{tangent} = -1$ (radius \perp tangent) $\therefore m_{tangent} = \frac{4}{3}$ $\therefore y = \frac{4}{3}x + c$ Subst. P(6; 0) $0 = \frac{4}{3}(6) + c$ c = -8 \therefore Equation of tangent is: $y = \frac{4}{3}x + 8$

Example 5 (Try yourself)

Given the circle with diameter AB and centre (1;-1).

1. Find the equation of the circle.

Work out the co-ordinates of B using midpoint theorem

1.

$$\frac{x+5}{2} = 2 \frac{y+0}{2} = -3$$

$$x + 5 = 4 \quad y + 0 = -6$$

$$x = -1 \qquad y = -6$$

$$\therefore B(-1; -6)$$

$$(x - a)^{2} + (y - b)^{2} = r^{2}$$

$$(x - 2)^{2} + (y - (-3))^{2} = r^{2}$$
Subst. A(5; 0)

$$(5 - 2)^{2} + (0 + 3)^{2} = r^{2}$$

$$r^{2} = 18$$

$$\therefore (x - 2)^{2} + (y + 3)^{2} = 18$$

Answer

Page 3 of 5

2. The equation of the tangent at A

 $m_{radius} = \frac{0 - (-3)}{5 - 2} = 1$ $\therefore m_{tangent} = -1$ (radius \perp tangent) y = -x + c 0 = -(5) + c c = 5 $\therefore y = -x + 5$

3. Determine the equation of a line parallel to the tangent at A and passing through the point C (2;8).

Tangent at A: y = -x + 5Parallel line: y = -x + c 8 = -(2) + c c = 10 $\therefore y = -x + 10$

Parallel Lines have equal gradients

Determine whether the tangent at B will intersect with the tangent at A.
 <u>HINT:</u> Work out the equation of the Tangent at B and equate Tangent at A to Tangent at B.

Tangent at A: y = -x + 5Tangent at B(-1; -6): $m_{radius} = \frac{-6-(-3)}{-1-2} = 1$ $\therefore m_{tangent} = -1$ (radius \perp tangent) Tangent at B(-1; -6): y = -x + c -6 = -(-1) + c c = -7 $\therefore y = -x - 7$ $\therefore -x + 5 = -x - 7$ 0 = -12 ... No solution Tangents do not intersect

Example 6 (Try yourself)

Find the equation of the tangent APB which touches a circle centre C with equation $(x - 3)^2 + (y + 1)^2 = 20$ at P(5; 3).

<u>Answer</u>

Example 7 (Try yourself)

O is the centre of the circle in the figure below. P(x; y) and Q(12; 5) are two points on the circle. POQ is a straight line. The point R(t; -1) lies on the tangent to the circle at Q.

2.1	Determine the equation of the circle.	(3)
2.2	Determine the equation of the straight line through	
	P and Q.	(2)
2.3	Determine x and y, the coordinates of P.	(4)
2.4	Show that the gradient of QR is $-\frac{12}{5}$.	(2)
2.5	Determine the equation of the tangent QR in the form	
	y =	(3)
2.6	Calculate the value of t.	(2)
2.7	Determine an equation of the circle with centre Q(12; 5)	
	and passing through the origin.	(3)
		[19]

<u>Answer</u>

The centre is at the origin, so $x^2 + y^2 = r^2$.		2.4 tangent \perp radius so QR \perp PQ \checkmark	
2.1 $OQ^2 = (5)^2 + (12)^2 = 25 + 144 = 169 \sqrt{4}$		$m_{\rm PO} = \frac{0-5}{0-12} = \frac{5}{12}$	
So the equation of the circle is $x^2 + y^2 = 169 \checkmark$	(3)	-12 - 12 -	
		$\therefore m_{\rm QR} = -\frac{12}{5} \checkmark$	(2)
2.2 $m_{\rm PQ} = m_{\rm OQ} = \frac{0-5}{0-12} = \frac{5}{12} \checkmark$		2.5 $y = \frac{-12}{5}x + c \checkmark$ OR $y - y_1 = \frac{-12}{5}(x - x_1)\checkmark$	
PQ has y-intercept of 0. ✓	(2)	Substitute $Q(12; 5)$ into equation to find c:	
$y = \frac{5}{12}x$		$5 = \frac{-12}{5}(12) + c \checkmark \qquad \qquad y - 5 = \frac{-12}{5}(x - 12) \checkmark$	
2.3 By symmetry, P is the point $(-12; -5)$. $\checkmark \checkmark$ OR		$5 + \frac{144}{5} = c$ $y = \frac{-12}{5}x + \frac{144}{5} + 5$	
Substitute $y = \frac{5}{12}x$ into $x^2 + y^2 = 169$		$c = \frac{169}{5} \checkmark$ $y = -\frac{12}{5} x + \frac{169}{5} \checkmark$	
$x^2 + \left(\frac{5}{12}x\right)^2 = 169$		$y = \frac{-12}{5}x + \frac{169}{5}$	(3)
$x^2 + \frac{25}{144}x^2 = 169$		2.6 R(t; -1) lies on line with equation $y = \frac{-12}{5}x + \frac{169}{5}$	
$144x^2 + 25x^2 = 169 \times 144$		$\therefore -1 = \frac{-12}{5}t + \frac{169}{5}$	
$160x^2 - 24.226$		-5 = -12t + 169	
109x ² - 24 330		12t = 174	
$x^2 = 144$		t = 14.5 ((2)
$x = 12$ or $x = -12$ $x = -12$ according to given diagram \checkmark		<i>i</i> = 14,5 <i>v</i>	(2
$y = \frac{5}{10} x = \frac{5}{10} \times (-12) = -5 \checkmark$	(4)	2.7 $OQ^2 = (x - 12)^2 + (y - 5)^2 \checkmark \checkmark Q(12; 5)$ is centre of circle	
	(1)	Substitute (0; 0) into equation:	
So P is the point $(-12; -5)$.		$OQ^2 = (0 - 12)^2 + (0 - 5)^2$	
		$OO^2 = 144 + 25 = 169 \checkmark$	
		$(x - 12)^2 + (y - 5)^2 = 169$	(3)
			[19