## GRADE 12

## Analytical Geometry

## WEBSITE NOTES 3

TOPIC: The equation of a circle (any centre)

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

## The equation of a tangent to a circle

In Grade 11 you learnt:

1. Distance Formula
$A B=\sqrt{\left(x_{a}-x_{b}\right)^{2}+\left(y_{a}-y_{b}\right)^{2}}$
2. Gradient between two points
$m A B=\frac{y_{a}-y_{b}}{x_{a}-x_{b}}$
3. The MIDPOINT between two points

Midpoint $\mathrm{AB}=\left(\frac{x_{a}+x_{b}}{2} ; \frac{y_{a}+y_{b}}{2}\right)$
4. $m=\tan A$ (where $m$ is the gradient of a line and $A$ is the angle of inclination)

Revise to work out the equation of a circle

## Diameter is $2 \times$ radius

## Examples to try

1. Example where you are given the centre and the radius

Find the general equation a circle centre $(-1 ; 3)$ with a radius of 5 units.
2. Example where you are given the Diameter

Determine the equation the circle, given the diameter $A B$


## Tangents




## Where $r$ is the radius

## Example 1

Show that $2 x+5+y=0$ is a tangent to the circle $x^{2}+y^{2}=5$.
You will need to use simultaneous equations in this type of example. WHY???
You need to show that there is only 1 point of intersection. So you need to work out for x or for y . Look at the equations given and decide on the easier one to work out.

In this example $2 x+5+y=0$ can be easily changed to $y=-2 x-5$ and then substituted into $x^{2}+y^{2}=5$.
$y=-2 x-5 \ldots \ldots .$. (1)
Substitute (1) into (2) $x^{2}+(-2 x-5)^{2}=5$

$$
x^{2}+y^{2}=5
$$

$\qquad$ (2)

We are going to solve then only for $x$. If the $x$-values are the same, then the $y$-values will also be the same if we substitute back.
$x^{2}+(-2 x-5)^{2}=5$
$x^{2}+\left(4 x^{2}+20 x+25\right)=5$
$5 x^{2}+20 x+20=0$
$x^{2}+4 x+4=0$
$(x+2)(x+2)=0$
$x=-2$ or $x=-2$

## If 2 DIFFERENT points of intersection are found, the line is a

 SECANT.If there is no solution, the line does not intersect the circle.

## Example 2

Find the equation of the tangent to the circle $x^{2}+y^{2}=5$ at the point $(-2 ; 1)$.

## Answer

Tangent: $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
$m_{\text {radius }}=\frac{1-0}{-2-0}=\frac{-1}{2}$
Radius is $\perp$ to Tangent
$m_{\text {radius }} \times m_{\text {tangent }}=-1$
$\therefore m_{\text {tangent }}=2$
$y=2 x+c$
Substitute point of contact of tangent:

Tangent is a straight line, so we use the equation of a straight line

Work out the gradient of the radius. The centre of the circle is (0;0).

## REMEMBER:

Radius is $\perp$ to Tangent

$$
m_{\text {radius }} \times m_{\text {tangent }}=-1
$$

m being the gradient

Solve for c now.
Subst. P(-2; 1)
$1=2(-2)+c$
$c=5$
$\therefore$ Equation of tangent is:
$y=2 x+5$


Page 2 of 4

## Example 3 (Try yourself)

Find the equation of the tangent at the point $\mathrm{P}(1 ; 3)$, given the centre $\mathrm{C}(-1 ;-1)$.


## Example 4 (Try yourself)

Find the equation of the tangent to the circle $(x-2)^{2}+(y-3)^{2}=16$ at $(6 ; 0)$.
HINT: the centre of the circle you can get from the circle formula.

## Example 5 (Try yourself)

Given the circle with diameter $A B$ and centre ( $1 ;-1$ ).

1. Find the equation of the circle.


Work out the co-ordinates of $B$ using midpoint theorem
2. The equation of the tangent at A
3. Determine the equation of a line parallel to the tangent at $A$ and passing through the point $C(2 ; 8)$.
4. Determine whether the tangent at $B$ will intersect with the tangent at $A$.

HINT: Work out the equation of the Tangent at B and equate Tangent at A to Tangent at B.

## Example 6 (Try yourself)

Find the equation of the tangent APB which touches a circle centre C with equation $(x-3)_{2}+(y+1)_{2}=20$ at $\mathrm{P}(5 ; 3)$.

## Example 7 (Try yourself)

2. O is the centre of the circle in the figure below. $\mathrm{P}(x, y)$ and $\mathrm{Q}(12 ; 5)$ are two points on the circle. POQ is a straight line. The point $\mathrm{R}(t,-1)$ lies on the tangent to the circle at Q .


### 2.1 Determine the equation of the circle.

2.2 Determine the equation of the straight line through
P and Q .
2.3 Determine $x$ and $y$, the coordinates of P .
2.4 Show that the gradient of QR is $-\frac{12}{5}$.
2.5 Determine the equation of the tangent QR in the form $y=$
2.6 Calculate the value of $t$.
2.7 Determine an equation of the circle with centre $Q(12 ; 5)$ and passing through the origin.

