Theorem 5

A line drawn parallel to one side of a triangle
divides the other two sides proportionally.
line $\|$ one side of Δ or prop theorem; name ||

Given: $\triangle A B C$ with $D E \| B C$
Hint 2:
$\Delta^{\text {s }}$ on same base.
To Prove: $\quad \frac{A D}{D B}=\frac{A E}{E C}$

Construction: In $\triangle A D E$, draw height h relative to basis
$A D$ and the height k relative to basis $A E$. Combine $B E$ and DC to form $\triangle \mathrm{BDE}$ and $\Delta \mathrm{CED}$.

Proof:

$\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle B D E}=\frac{\frac{1}{2} \times A D \times h}{\frac{1}{2} \times B D \times h}=\frac{A D}{B D}$
$\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle C E D}=\frac{\frac{1}{2} \times A E \times k}{\frac{1}{2} \times E C \times k}=\frac{A E}{E C}$
\therefore Area $\triangle B D E=$ Area $\triangle C E D$
(Same base, same height and lies between parallel lines)
$\therefore \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle B D E}=\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle C E D}$
$\therefore \frac{A D}{B D}=\frac{A E}{E C}$

DEDUCTIONS

$\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}} ; \quad \frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}} ;$
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} ; \quad \frac{\mathrm{DB}}{\mathrm{AB}}=\frac{\mathrm{AC}}{\mathrm{EC}}$

Theorem 6

If two triangles are equiangular, then the corresponding sides are in proportion (and consequently the triangles are similar).

II| Δ^{s} or equiangular $\Delta \mathrm{s}$

Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ with
$\hat{\boldsymbol{A}}=\hat{\boldsymbol{D}} ; \quad \hat{\boldsymbol{B}}=\hat{\boldsymbol{E}}$ and $\hat{\boldsymbol{C}}=\hat{\boldsymbol{F}}$

To Prove: $\quad \frac{D E}{A B}=\frac{E F}{B C}=\frac{D F}{A C}$

Construction

On $A B$, mark off P and on $A C$ mark off Q such that $\mathrm{AP}=\mathrm{DE}$ and $\mathrm{AQ}=\mathrm{DF}$. Draw $P Q$.

Proof:

1. CONGRUENCY

In $\Delta \mathrm{APQ}$ and $\Delta \mathrm{DEF}$:

$$
\begin{array}{rlrl}
\mathrm{AP} & =\mathrm{DE} & \text { [Construction }] \\
\hat{A} & =\hat{D} & & {[\text { Given }]} \\
\mathrm{AQ} & =\mathrm{DF} & {[\text { Construction }]} \\
\therefore \Delta \mathrm{APQ} & \equiv \Delta \mathrm{DEF}[\mathrm{~s} ; \angle ; \mathrm{s}]
\end{array}
$$

3. Use THEOREM 1

$\frac{A P}{A B}=\frac{A Q}{A C}[$ line $\|$ one side of $\Delta ; \mathrm{PQ} / / \mathrm{BC}$ in $\Delta \mathrm{ABC}]$
But $\mathrm{AP}=\mathrm{DE}$ and $\mathrm{AQ}=\mathrm{DF}$ [Constr]

$$
\frac{D E}{A B}=\frac{D F}{A C}
$$

