DIFFERENTIAL CALCULUS

FIRST PRINCIPLES

Visual representation of $1^{\text {st }}$ Principles

Graphical Representation of Derivatives

$>$ We are going to find the gradient at a point, anywhere along any function, using the First Principles Formula:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

First Principles Example: $f(x)=a$ (where a is a constant)

$$
f(x)=3
$$

$\therefore \mathrm{f}(\mathrm{x}+\mathrm{h})=3 \quad$ A CONSTANT so does NOT change

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{3-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{0}{h} \\
& =0
\end{aligned}
$$

First Principles Example: $f(x)=a x$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=2 \mathrm{x} \\
& \mathrm{f}(\mathrm{x}+\mathrm{h})=2(\mathrm{x}+\mathrm{h})=2 \mathrm{x}+2 \mathrm{~h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{2 x+2 h-2 x}{h} \\
&=\lim _{h \rightarrow 0} \frac{2 h}{h} \\
&=2
\end{aligned}
$$

First Principles Example: $f(x)=a x^{2}$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \\
& \mathrm{f}(\mathrm{x}+\mathrm{h})=(\mathrm{x}+\mathrm{h})^{2}=\mathrm{x}^{2}+2 \mathrm{xh}+\mathrm{h}^{2} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-\left(x^{2}\right)}{h} \\
&=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
&=2 \mathrm{x}
\end{aligned}
$$

First Principles Example: $f(x)=a x^{2}$

$$
\begin{aligned}
& f(x)=2 x^{2}-1 \\
& f(x+h)=2(x+h)^{2}-1=2 x^{2}+4 h x+2 h^{2}-1
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\left(2 x^{2}+4 h x+2 h^{2}-1\right)-\left(2 x^{2}-1\right)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{2 x^{2}+4 h x+2 h^{2}-1-2 x^{2}+1}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{h(4 x+2 h)}{h}
$$

$$
=4 x
$$

Derivative of a Quadratic

Function

First Principles Example: $f(x)=a x^{3}$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3} \\
& \begin{aligned}
\mathrm{f}(\mathrm{x}+\mathrm{h}) & =2(\mathrm{x}+\mathrm{h})^{3}=2(\mathrm{x}+\mathrm{h})\left(\mathrm{x}^{2}+2 \mathrm{xh}+\mathrm{h}^{2}\right) \\
& =2 \mathrm{x}^{3}+6 \mathrm{x}^{2} \mathrm{~h}+6 \mathrm{xh}^{2}+2 \mathrm{~h}^{3}
\end{aligned} \\
& \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h(x)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(2 x^{3}+6 x^{2} h+6 x h^{2}+2 h^{3}\right)-\left(2 x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(2 x^{3}+6 x^{2} h+6 x h^{2}+2 h^{3}\right)-\left(2 x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(6 x^{2}+6 x h+2 h^{2}\right)}{h}=6 \mathrm{x}^{2}
\end{aligned}
\end{aligned}
$$

Derivative

 of a Cubic Function
First Principles Example:

$f(x)=\frac{a}{x}$

$$
\begin{aligned}
& f(x)=\frac{1}{x} \\
& f(x+h)=\frac{1}{x+h}
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}
$$

Fractions within fractions are a clumsy! So, use division signs

$$
=\lim _{h \rightarrow 0}\left(\frac{1}{x+h}-\frac{1}{x}\right) \div \frac{h}{1}
$$

$$
=\lim _{h \rightarrow 0} \frac{x-(x+h)}{x(x+h)} \times \frac{1}{h}
$$

First Principles Example continued

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{x-(x+h)}{x(x+h)} \times \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{x-x-h}{x(x+h)} \times \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{x(x+h)} \times \frac{1}{6} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =\frac{1}{x[x+(0)]} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

DIFFERENTIATION NOTATION

1. Question:

Differentiated Answer: $\quad f^{\prime}(x)=\ldots$
2. Question:
$\mathrm{y}=\ldots$
Differentiated Answer: $\quad \frac{d y}{d x}=\ldots$
3. Question:

Answer:
$\mathrm{f}(\mathrm{x})=\ldots$

RULES OF DIFFERENTIATION

1. $f^{\prime}(\mathrm{a})=0$
2. $f^{\prime}(a x)=a$
3. $f^{\prime}\left(a x^{n}\right)=n . a x^{n-1}$
where a and n are constants

Differentiation Rules Examples

1. $f(x)=-2$

$$
f^{\prime}(x)=0
$$

$$
f^{\prime}(a)=0
$$

2. $f(x)=4 x$

$$
f^{\prime}(x)=4
$$

$$
f^{\prime}(a x)=a
$$

3. $f(x)=-3 x^{2}+6 x-9$

$$
f^{\prime}(x)=-6 x+6
$$

$$
f^{\prime}\left(a x^{n}\right)=n \cdot a x^{n-1}
$$

Differentiation Rules Examples

$$
\text { 4. } \begin{aligned}
f(x) & =(x-1)(x-2) \\
& =x^{2}-3 x+2
\end{aligned}
$$

First multiply out brackets

$$
f^{\prime}(x)=2 x-3
$$

$$
f(x)=\frac{1}{x}
$$

5. $f(x)=\frac{1}{x}$

$$
=x^{-1}
$$

Can't differentiate with x in the denominator ... so write with negative exponents

$$
f^{\prime}(x)=-x^{-2}
$$

$$
\text { 6. } f(x)=\frac{x}{3}\left(=\frac{1}{3} x\right)
$$

$$
f^{\prime}(x)=\frac{1}{3}
$$

Differentiation terms in the form $a x^{\wedge} n$

Differentiation Rules Examples

7. $f(x)=\frac{8 x^{2}-x}{x}$
$=\frac{8 x^{2}}{x}-\frac{x}{x}$
$=8 x-1$

$$
f^{\prime}(x)=8
$$

8. $f(x)=\frac{x^{2}-9}{x-3}$
$=\frac{(x-3)(x+3)}{x-3}$
$=x+3$
$f^{\prime}(x)=1$
Differentiating terms with fractions

Differentiation Rules Examples

9. $f(x)=\sqrt{x}$

$$
=x^{\frac{1}{2}}
$$

Can't differentiate with roots, so

$$
f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}
$$ write with rational exponents!

10. $f(x)=4 \cdot \sqrt[3]{x}$

$$
=4 \cdot x^{\frac{1}{3}}
$$

$$
f^{\prime}(x)=\frac{4}{3} x^{-\frac{2}{3}}
$$

Differentiating terms with roots
Recap of the concept of the derivative

