

FIRST PRINCIPLES

Visual representation of 1st Principles

Graphical Representation of Derivatives

➤ We are going to find the gradient at a point, anywhere along any function, using the First Principles Formula:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

First Principles Example: f(x) = a (where a is a constant)

$$f(x) = 3$$

 $\therefore f(x+h) = 3$ A CONSTANT so does NOT change

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{3-3}{h}$$
$$= \lim_{h \to 0} \frac{0}{h}$$
$$= 0$$

First Principles Example: f(x) = ax

f(x) = 2xf(x+h) = 2(x+h) = 2x + 2h $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h - h - h}$ h $\lim_{h \to \infty} 2x + 2h - 2x$ $=_{h \rightarrow 0}$ h $=_{h\to 0}^{\lim} \frac{2h}{h}$

= 2

First Principles Example: $f(x) = ax^2$

 $f(x) = x^2$ $f(x+h) = (x+h)^2 = x^2 + 2xh + h^2$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h - f(x)}$ h $\lim x^2 + 2xh + h^2 - (x^2)$ $=_{h \to 0}$ h $=_{h \to 0} \frac{h(2x+h)}{h}$ = 2x

First Principles Example: $f(x) = ax^2$

 $f(x) = 2x^2 - 1$ $f(x+h) = 2(x+h)^2 - 1 = 2x^2 + 4hx + 2h^2 - 1$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $=_{h \to 0}^{\lim} \frac{(2x^2 + 4hx + 2h^2 - 1) - (2x^2 - 1)}{(2x^2 - 1)}$ h $\lim_{k \to \infty} 2x^2 + 4hx + 2h^2 - 1 - 2x^2 + 1$ $=_{h \rightarrow 0}$ h $=_{h\to 0}^{\lim} \frac{h(4x+2h)}{h(4x+2h)}$ h**Derivative of a Quadratic** = 4xFunction

First Principles Example: $f(x) = ax^3$

 $f(x) = 2x^3$ $f(x+h) = 2(x+h)^3 = 2(x+h)(x^2+2xh+h^2)$ $= 2x^3 + 6x^2h + 6xh^2 + 2h^3$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{x}$ $=_{h \to 0}^{\lim} \frac{(2x^3 + 6x^2h + 6xh^2 + 2h^3) - (2x^3)}{h}$ $=\lim_{h \to 0} \frac{(2x^3 + 6x^2h + 6xh^2 + 2h^3) - (2x^3)}{(2x^3 + 6x^2h + 6xh^2 + 2h^3) - (2x^3)}$ h $\lim_{h \to 0} \frac{h(6x^2 + 6xh + 2h^2)}{h + 6xh + 2h^2}$ **Derivative** of a Cubic $= 6x^{2}$ **Function** h

First Principles Example: $f(x) = \frac{a}{x}$

7

$$f(x) = \frac{1}{x}$$

$$f(x+h) = \frac{1}{x+h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

$$= \lim_{h \to 0} \frac{(\frac{1}{x+h} - \frac{1}{x}) \div \frac{h}{1}}{h}$$
Get an LCD

First Principles Example continued .. $f(x) = \frac{1}{x}$

$$f'(x) = \lim_{h \to 0} \frac{x - (x + h)}{x(x + h)} \times \frac{1}{h}$$
$$= \lim_{h \to 0} \frac{x - x - h}{x(x + h)} \times \frac{1}{h}$$
$$= \lim_{h \to 0} \frac{-h}{x(x + h)} \times \frac{1}{h}$$
$$= \lim_{h \to 0} \frac{-1}{x(x + h)}$$
$$= \frac{1}{x[x + (0)]}$$
$$= \frac{1}{x^2}$$

DIFFERENTIATION NOTATION

- Question:
 Differentiated Answer:
- 2. Question:
 - Differentiated Answer:
- 3. Question: Answer:

- $f(x) = \dots$ $f'(x) = \dots$
- $y \equiv \dots$ $\frac{dy}{dx} = \dots$
 - D(x) [...]

Relationship between f(x) and f⁺(x)

RULES OF DIFFERENTIATION

1.
$$f'(a) = 0$$

2. $f'(ax) = a$
3. $f'(ax^n) = n.a x^{n-1}$

where a and n are constants

1.
$$f(x) = -2$$

 $f'(x) = 0$

$$\begin{array}{ll} 2. & f(x) = 4x \\ f'(x) = 4 \end{array}$$

$$f'(a)=0$$

$$f'(ax) = a$$

3. $f(x) = -3x^2 + 6x - 9$ f'(x) = -6x + 6

$$f'(ax^n) = n.ax^{n-1}$$

4.
$$f(x) = (x - 1)(x - 2)$$

$$= x^{2} - 3x + 2$$
First multiply out brackets

$$f'(x) = 2x - 3$$
5.
$$f(x) = \frac{1}{x}$$
Can't differentiate with x in the denominator ... so write with negative exponents

$$f'(x) = -x^{-2}$$
6.
$$f(x) = \frac{x}{3} (= \frac{1}{3}x)$$
Careful now! There is no x in the denominator

$$f'(x) = \frac{1}{3}$$
Differentiation terms in the form ax^n

7.
$$f(x) = \frac{8x^2 - x}{x}$$
$$= \frac{8x^2}{x} - \frac{x}{x}$$
$$= 8x - 1$$
$$f'(x) = 8$$
8.
$$f(x) = \frac{x^2 - 9}{x - 3}$$
$$= \frac{(x - 3)(x + 3)}{x - 3}$$
$$= x + 3$$
$$f'(x) = 1$$

Simplify by splitting terms!

Simplify by factorization!

Differentiating terms with fractions

9.
$$f(x) = \sqrt{x}$$

 $= x^{\frac{1}{2}}$
 $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$
10. $f(x) = 4 \cdot \sqrt[3]{x}$
 $= 4 \cdot x^{\frac{1}{3}}$
 $f'(x) = \frac{4}{2}x^{-\frac{2}{3}}$

Differentiating terms with roots

Can't differentiate with roots, so write with rational exponents!

Careful now with the 4!

Recap of the concept of the derivative